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Abstract— This paper addresses the problem of state estima-
tion for linear dynamic cyber-physical systems (CPS) that is
resilient against malicious integrity attacks on sensors. A re-
silient moving-horizon estimation (MHE) scheme is proposed to
correctly estimate the states under sensor attacks by exploiting
sensor redundancy, and it is optimal with a guarantee of prior
knowledge in the form of both state and disturbance constraints.
In this framework, the problem is formulated as a multistage
optimal control problem from the perspective of probability
theory. Then, it is solved by a special kind of optimization, the
bi-level optimization, where the upper-level optimization task
responds to the optimal state estimation, while the lower-level
optimization task excludes the compromised sensors. Moreover,
the strategy to reduce the computational burden is to develop a
moving horizon approximation that has been used successfully
to develop stabilizing estimation strategy. Numerical simulation
is provided to illustrate the performance of the proposed state
estimation scheme.

I. INTRODUCTION

Recent years, automobile industry has witnessed a sig-
nificant increase in the number of security-related reports
on electronic control systems (ECS) [1], [2]. These high-
profile attacks are in a wide range of ECS, from attacks on
global positioning system (GPS) [3], inertial measurement
units (accelerometers and gyroscopes) [4], light detection and
ranging sensors [5], to attacks on engine control systems [6],
electronic brake control systems [4] and keyless entry and
start systems [7]. Various cyber security and communication
cryptographic approaches have been proposed to prevent
intrusions (see, e.g., [8] and the references therein), but an
adversary can still affect the vehicle control systems via the
computational nodes (e.g., ECU), communication networks
and physical sensors (e.g., GPS), since resource constraints
inherent in vehicle real-time control may prevent heavy-duty
security approaches from being applied [9].

In this paper, a general problem is addressed that consists
in estimating the state variables of a linear dynamic system
by means of measures possibly attacked by an adversary.
The estimation is performed by using a moving horizon
estimation (MHE) approach, which will be set in such a
way to make it resilient to sensor attacks. The first idea
about what is currently denoted as MHE is presented in [10].
MHE determines state estimate online by solving a finite
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horizon optimization problem [11], [12]. As new measure-
ments become available, the old measurements are discarded
from the estimation window, and the finite horizon state
problem is resolved to determine the update estimate of the
state. The method is optimization based, so one may check
abnormal measurements (caused by faults and/or attacks) via
hardware or analytical redundancy [13], and handle explicitly
state estimation with inequality constraints on the decision
variables.

The problem of state estimation in the presence of sensor
attacks has attracted more attention recent years [14]-[15]. D-
ifferent from sensor faults or outliers, an intelligent adversary
can invalidate the fault detection and isolation (FDI) systems
and launch an attack with a number of compromised sensors
to destroy the estimation and control performance [14],
[16], [17]. For deterministic linear systems, the secure state
estimation in the presence of sensor attacks can be obtained
as the l0 optimization problem [18]. They proved that if the
attacker can manipulate less than half the measurements it
is possible to accurately reconstruct the state variables of a
system despite attacks. The similar conclusion was indicated
in [19] as well. For stochastic systems, Pajic et al. [20], [21]
proposed an l0-norm moving horizon approach, in which the
estimator will use the measurements from time k − T + 1
to time k to estimate the current state x(k) with a bound
for the state estimation error. However, the measuring data
before time k − T are discarded in the l0-norm-based state
estimator, which may result in a degradation of the estimation
performance. In addition, the idea of employing a bank of
observers is developed for detecting compromised sensors
and estimating states, which includes Luenberger observer
[22], Kalman filter [23], high-gain observer [24], event-
trigger observer [15], et al.

In this paper, we focus on the estimation problem for linear
discrete-time systems with less than half measurements at-
tacked by adversary. First we will propose a new framework
of resilient moving-horizon estimation. Different from the
preliminary moving horizon results [18], [20], [21], the full
information estimate of state is utilized to obtain the optimal
estimation performance, and the estimation is equivalent to
a multistage optimal control problem from the perspective
of probability theory. A bi-level optimization scheme is
introduced to provide the solution as a two-step strategy, each
of which can be formulated as a feasible programming prob-
lem. Furthermore, the strategy to reduce the computational
burden is developed by a moving horizon approximation that
has been used successfully to develop stabilizing estimation
strategy. Numerical simulation is provided to illustrate the
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performance of the proposed state estimation scheme.
The paper is organized as follows. Section II introduces

the notations used throughout the paper and the necessary
assumptions. In Section III, the proposed resilient MHE
approach is described, where both the optimal property and
the bi-level optimization solution are studied. Furthermore,
we investigate a finite resilient MHE with moving horizon
approximation, and sum up an algorithm. Finally, simulation
results are given in Section IV and we provide concluding
remarks in Section V

II. PRELIMINARIES

The denotations in this paper is as follows. R is used to
denote the set of reals and the ith element of a vector xk
is denoted by xk,i. For vector x and matrix A, |x| and |A|
denote the vector and matrix whose elements are absolute
values of the initial vector and matrix, respectively. For a
vector v, ‖v‖2P := vTPv denotes its generalized Euclidean
norm with symmetric positive definite matrix P = PT >
0.For a vector f ∈ Rm, the support of the vector is set
supp(f) = {i|fi 6= 0} ⊆ {1, 2, . . . ,m}, while the l0 norm
of vector f is the size of supp(f), which implies ‖f‖l0 =
|supp(f)|.

In this paper, we investigate online optimization strategies
for estimating the state of compromised systems modeled by
a linear time-invariant (LTI) system of the form

xk+1 = Axk + wk

yk = Cxk + vk + Eek (1)

where xk ∈ Rn denotes the plant’s state vector at time k,
respectively, while yk ∈ Rm describes the plant’s output
vector obtained from measurements of m sensors. wk ∈
Rn and vk ∈ Rm denote the process and measurement
disturbance vector, respectively. Accordingly, A ∈ Rn×n,
C ∈ Rm×n are the state and output matrices, respectively.
The matrix E ∈ Rm×p denotes the projection from the attack
ek ∈ Rp to the sensor yk. Given m > p, we have an SVD
decomposition

E =
[
UT1 UT2

] [ Ip
0m−p

]
(2)

such that U2E = 0 with U2 ∈ R(m−p)×m.
It is known that the state and disturbances satisfy the

following constraints:

xk ∈ X ⊆ Rn, wk ∈W ⊆ Rn, vk ∈ V ⊆ Rm (3)

where the constraints W and V are interpreted as a strategy
for modeling bounded disturbances or random variables with
truncated densities, and the state constraint X may be used
to account for model inaccuracies or physical properties.

Let xk(zl, {wj}) denote the state solution of the system
(1) at time k when the initial state is z at time l and the
state disturbance sequence is {wj}kj=l, and let the vector
yk(zl, {wj}) denote the predicted output at time k when the
initial condition at time l is z and the disturbance sequence
is {wj}kj=l.

We now introduce assumptions for the system (1).
Assumption 1: The dimension of ek satisfies 2p < m.
Assumption 2: The attack matrix E is unknown for the

resilient estimator design, but the pair (U2C,A) is observ-
able.

Assumption 3: Disturbances wk, vk, initial state x0 and
attack vector ek are independent.

Assumption 4: The priori estimate of initial state x0 fol-
lows a normal distribution with mean x̄0 and variance P−10 .

Assumption 5: The disturbance sequences {wk} and {vk}
are normal distributions with zero-mean and variances Q−1

and R−1, respectively.
Assumption 1 states that strictly less than half of all the

sensors in the system may be under integrity attack. This
is a standard assumption for resilient state estimation [18],
[19]. The rationale is that the adversaries who attack the
sensors have limited resource only enough to compromise a
subset of the sensors. Assumption 2 indicates that the form
of attacks is unknown a prior, which is the main difference
from faults, while the observability ensures that an estimator
can be constructed. From system design point of view, one
can select sensors that satisfy Assumption 2. In addition,
Assumptions 3-5 are well-established for MHE to yield the
exact conditional probability estimate in the special case that
all errors are Gaussian-distributed.

III. SECURE MOVING HORIZON ESTIMATION

A. Full Information Estimate Problem

Notice that moving horizon estimation is an optimization
approach that uses a series of measurements observed over
time, containing noise (random variations) and other inac-
curacies, and produces estimates of unknown variables or
parameters. Unlike deterministic approaches like the Kalman
filter, MHE requires an iterative approach that relies on linear
programming or nonlinear programming solvers to find a
solution. Unfortunately, the conventional cost function is not
feasible in case of measurements compromised by attacks. To
resilient estimation, the straightforward idea is that at each
iteration we minimize a least-squares cost function, where
the measurements that can be affected by attackers are left
out.

Hence we formulate the resilient MHE problem, for T ≥
0, as the solution to the following optimal control problem:

P1(T ) : Φ∗T = min
x0,{wk}T−1

k=0 ,U2

ΦT
(
{wk}T−1k=0 , x0, U2

)
(4)

subject to the the dynamic constraints

x̂k+1 = Ax̂k +Bwk, k ∈ [0, T − 1] (5)

and the time-domain constraints

x̂k ∈ X, k ∈ [0, T ] ; wk ∈W, k ∈ [0, T − 1] (6)
yck − U2Cx̂k ∈ Vc, k ∈ [0, T − 1] (7)
yck = U2yk, Vc = {vck|vck = U2vk, vk ∈ V} (8)
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where Rc = U2RU
T
2 and

ΦT
(
{wk}T−1k=0 , x0, U2

)
=

T−1∑
k=0

‖yck − U2Cx̂k‖2Rc
+ ‖wk‖2Q + ‖x0 − x̄0‖2P (9)

Different from the conventional MHE, the solution to the
problem P1(T ) at time T is the triple(

x̂0|T−1, {ŵk|T−1}T−1k=0 , Û2|T−1

)
and the optimal triple yields an estimate {x̂k|T−1}T−1k=0 of
the actual sequence {xk} from the iterative solution of (5)
with the initial state x̂0|T−1 at time k = 0 and disturbance
sequence {ŵk|T−1}T−1k=0 , i.e.,

x̂k|T−1 := xk
(
x̂0|T−1, {ŵk|T−1}T−1k=0

)
(10)

Theorem 1: Given Assumptions 1-5 and the system mea-
surements {yk}T−1k=0 compromised by sensor attacks ek, the
solution of problem P1(T ) is the optimal moving horizon
estimation.

Proof: To prove the optimal estimation, we formulate
the state estimation problem P1(T ) from the perspective of
probability theory. Due to sensor attack, the output signal yk
can be divided as yek = U1yk = U1Cxk + U1vk + ek ∈ Rp
and yck = U2yk = U2Cxk + U2vk ∈ Rm−p. Due to
the attack ek, the output yek is independent of xk. Given
Assumption 2, the conditional probability density function of
the state evolution {x0, x1, . . . , xT } given the measurements
{y0, y1, . . . , yT−1} is equivalent to that given the measure-
ments {yc0, yc1, . . . , ycT−1}, i.e.,

p(x0, x1, . . . , xT |y0, y1, . . . , yT−1) =

p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1) (11)

The optimal estimate of the state x̂k|T−1 at time k is then
a functional LT of conditional probability density function
(11):

{x̂0|T−1,x̂1|T−1, . . . , x̂T |T−1} =

LT
(
p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1)

)
A typical choice for the functional LT is the maximum a
posteriori Bayesian (MAP) estimate:

{x̂0|T−1,x̂1|T−1, . . . , x̂T |T−1} ∈
argmax
x0,x1,...,xT

p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1)

Using the Markov property, we can express the joint proba-
bility of the state as

p(x0, . . . , xT ) = px0
(x0)

T−1∏
k=0

p(xk+1|xk)

where px0
(x0) denotes the prior information of the initial

state. According to Assumption 3 that vk is independent,
using the sensor model yck we have the relationship

p(yc0, . . . , y
c
T |x0, . . . , xT−1) =

T1∏
k=0

pvk (yck − U2Cxk)

Applying Bayes’s rule, the conditional probability density
function (11) can be rewritten as

p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1) ∝

px0
(x0)

T−1∏
k=0

pvk (yck − U2Cxk) p(xk+1|xk)

and with the properties of logarithms and Assumption 4 and
5, we have

argmax
x0,x1,...,xT

p(x0, x1, . . . , xT |y0, y1, . . . , yT−1)

= argmax
x0,x1,...,xT

p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1)

= argmax
x0,x1,...,xT

ln p(x0, x1, . . . , xT |yc0, yc1, . . . , ycT−1)

= argmax
x0,x1,...,xT

T1∑
k=0

[ln pvk(yck − U2Cxk) + ln p(xk+1|xk)]

+ ln px0
(x0) = argmin

x0,x1,...,xT

ΦT ({wi}, x0, U2)

which indicates the performance index (9) in the problem
P1(T ) is optimal for the probability estimation, and the proof
is thus completed.

B. Bi-Level Optimization Problem

In the previous content, a state estimation problem P1(T )
is formulated, however, solving this optimization online is
still computationally heavy (NP-hard) due to the lack of the
knowledge of E or U2. In this subsection, we will propose a
bi-level optimization strategy, which transforms the problem
P1(T ) into two easy programming problems.

Note that the bilinear products of E and ek make the
estimation problem as a non-convex optimization. To deal
with this problem, the concept of over-parameterization is
applied by introducing a new variable

fk = Eek ∈ Rm×p (12)

with a property of ‖fk‖l0 = p. From (1) it follows that for
k = 0, 1, . . . , T − 1

yk = CAkx0 + fk + C

k−1∑
i=0

Ak−1−iwi + vk (13)

Since both disturbances wk and vk are bounded, then there
exists a matrix ∆T = [δ0, δ1, . . . , δT−1] ∈ Rm×T containing
positive thresholds δk,j > 0 with k = 0, 1, . . . , T − 1 and
j = 1, . . . ,m such that

|yk − CAkx0 − fk| ≤ |C|
k−1∑
i=0

|Ak−1−i||wi|+ |vk| ≤ δk

Referring to [20], [21], under Assumption 1, the following
mixed-integer linear programming problem is formulated to
obtain the l0 norm of attack sequence:

P2(T ) : Ψ∗T = min ΨT

(
x0, {fk}T−1k=0 , γ

)
= min

m∑
i=1

γi

(14)
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subject to

−δk ≤ yk − CAkx0 − fk ≤ δk, k = 0, . . . , T − 1 (15)
−γiα ≤ fk,i ≤ γiα , i = 1, . . . ,m (16)

γ =
[
γ1, · · · , γm

]
∈ {0, 1}m (17)

where α is a sufficiently large positive constant. Consequent-
ly, the solution to P2(T ) at time T is the triple(

x̂0|T−1, {f̂k|T−1}T−1k=0 , γ̂|T−1

)
and the optimal triple yields an estimate Û2|T−1 of the actual
matrix U2 in the form of

Û2|T−1 = Im/γ̂|T−1 ∈ R(m−p)×m (18)

where Im/γ̂|T−1 specifies a matrix by deleting the ith rows
of the identity matrix Im ∈ Rm×m with respect to γ̂i|T−1 =
1.

Together with the problem P1(T ) and P2(T ), the follow-
ing bi-level optimal state estimation problem can be written
as follows:

P3(T ) : Φ∗T = min
x0,{wk}T−1

k=0 ,U2

ΦT
(
{wk}T−1k=0 , x0, U2

)
(19)

subject to (5)-(8) and

U2 ∈ argmin
γ

{
ΨT

(
x0, {fk}T−1k=0 , γ

)
s.t. (15)-(17)

}
(20)

In the problem P3(T ), the optimal estimation is divided
into two levels: the upper-level optimization task responds
to the optimal state estimation, while the lower-level opti-
mization task excludes the compromised sensors. Note that
the lower-level optimization is a mix-integer linear program-
ming with NP-hard, but the upper-level one is the standard
quadratic programming with linear constraints. Hence, the
problem P3(T ) is better than P1(T ) for a solution.

In the following theorem, the optimal property of the
problem P3(T ) is investigated.

Theorem 2: Given Assumptions 1-5 and the system mea-
surements {yk}T−1k=0 compromised by sensor attacks ek, the
solution of the problem P3(T ) is equivalent to that of the
problem P1(T ).

Proof: From the problem P3(T ), the event of solving
the optimal U∗2 in the lower-level optimization is independent
of the initial state x0 and the disturbance sequence {wk}T−1k=0

of the upper-level optimization. It also means that two events
of ΦT and ΨT are independent, i.e.,

p(x0, {wk}T−1k=0 , U2|{yk}T−1k=0 ) =

p(x0, {wk}T−1k=0 |{yk}
T−1
k=0 )p(U2|{yk}T−1k=0 ) (21)

Based on Bellman’s Principle of Optimality [25], we have
the conclusion in Theorem 2.

C. Finite Secure Moving Horizon Estimation Problem
The formulation of problem P3(T ) is referred to the full

information problem and x̂k is the full information estimate
of xk. This problem has T states and disturbances, so the
computational complexity scales at least linearly with T .
Due to the time-domain constraints and the mixed-integer
programming with NP-hard, the conline solution of P3(T )
is impractical because the computational burden increases
with time. To make the problem tractable, one needs to
finite secure MHE. One strategy to reduce P3(T ) is a
fixed-dimension optimal control problem is to employ a
moving horizon approximation [11]. Unlike the full informa-
tion problem, finite MHE estimates the truncated sequence
{xk}Tk=T−N where the step error T −N > 0 determines the
length of the estimate window. The key to preserving stability
and performance is how one approximately summarizes the
past data.

First, it is straightforward that the lower-level optimization
problem P2(T ) can be rewritten as the window [T−N,T−1]
form of

P ′2(N) :

Ψ∗N = min ΨN

(
xT−N , {fk}T−1k=T−N , γ

)
= min

m∑
i=1

γi

(22)

subject to∣∣yT−N+k − CAkxT−N − fT−N+k

∣∣ ≤ δT−N+k (23)

|fk,i| ≤ γTα, γ =
[
γ1, · · · , γm

]
∈ {0, 1}m (24)

for k = 0, . . . , T −N and i = 1, . . . ,m, which implies that
the estimate of U2 in the problem P ′2(N) depends only on the
set of compromised sensors during the estimate window [T−
N,T −1]. Accordingly, one can use the estimate of U2 from
problem P ′2(N) instead of the one from problem P2(N) to
reduce the computational cost. It should be emphasized that
the iterative form of P ′2(N) makes P ′2(N) robust against the
change of U2.

Different from the lower-level optimization, the upper-
level objective function should be given by breaking the time
interval into two pieces as follows:

ΦT ({wk}, x0, U2) = ΦN
(
{wk}T−1k=T−N , U2

)
+ ΦT−N

(
{wk}T−N−1k=0 , x0, U2

)
Note that ΦT−N ({wk}, x0, U2) is the difference between
ΦT ({wk}, x0, U2) and

ΦN ({wk}, U2) =

T−1∑
k=T−N

‖yck − U2Cx̂k‖2Rc
+ ‖wk‖2Q

Exploiting the relation using forward dynamic programming,
we are able to establish the equivalence between a full
information problem and an estimation problem with a fixed-
size estimation window.

Given the initial state x0 ∈ X, if there exists disturbances
{wk}τ−1k=0 such that

xτ (x0, {wk}τ−1k=0) = z ∈ X
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then we say the state z is reachable at time τ and the set of
all reachable states is the corresponding reachable set, i.e.,

Zτ =
{
xτ (x0, {wk}τ−1k=0) : x0 ∈ X, {wk} ∈W

}
Then we define the arrival cost at time τ for the state z ∈ Zτ
as

Θτ = min
x0,{wk}

{
Φτ (x0, {wk}, U2) : xτ (x0, {wk}τ−1k=0) = z

}
Based on the above cost function, we can reformulate the
bi-level optimization problem P3(T ), for T > N , as the
following equivalent optimal control problem:

P ′3(T ) : Φ∗T = min
z,{wk},U2

{
ΦT
(
{wk}T−1k=T−N , U2

)
+ΘT−N (xT−N ) : z ∈ ZT−N

}
(25)

subject to (5)-(8) with k = T −N, . . . , T − 1 and

U2 ∈ argmin
γ

{
ΨN

(
xT−N , {fk}T−1k=T−N , γ

)
s.t. (23)-(24)

}
(26)

Then an estimate {x̂k|T − 1}T−1k=T−N of the actual states is
given by

x̂k|T−1 := xk
(
x̂T−N |T−1, {ŵk|T−1}T−1k=T−N

)
(27)

for k = T −N, . . . , T − 1.
When the system is nonlinear or constrained, an algebraic

expression for the arrival cost rarely exits, yet an approx-
imation Θ′T−N (xT−N ) of the arrival cost ΘT−N (xT−N )
without constraints can be motivated by the standard Kalman
estimate, i.e.,

Θ′T−N (xT−N ) = ‖xT−N − x̄T−N‖2PT−N
(28)

where both PT−N and x̄T−N can be calculated from the
previous iteration results as follows:

PT−N = S−1T−N > 0, P0 > 0 (29)

ST−N = (I −KT−NU2C)S̄T−N (30)

KT−N = S̄T−NC
TUT2 S̃

−1
T−N (31)

S̃T−N = R−1c + U2CS̄T−NC
TUT2 (32)

S̄T−N = AS̄T−N−1A
T +Q−1 (33)

x̄T−N = Ax̂T−N−1|T−2 + ŵT−N−1|T−2 (34)

At the end, we provide a resilient moving horizon estima-
tion algorithm by using the previous arguments.

IV. CASE STUDY: RESILIENT ESTIMATION ON
ENGINE AIR PATH SYSTEMS

In this section, the use of the proposed resilient MHE
scheme is illustrated on a vehicle engine air path system. The
diagram of the system is depicted in Figure 1. The engine
air path system describes the whole process of air flow from
ambient to cylinders and reveals the physical dynamics. At
first, the air flows through the throttle, where the air mass
flow qair can be controlled by the throttle angle actuator θth.
Then the fresh air flows into the intake manifold and changes
the manifold pressure Pm. Finally, the air ultimately flows

Algorithm 1 Resilient MHE
1: Initialize Q, R and a priori estimate of x0 and P0 as

well as the window length N . Set T = 1.
2: If T ≤ N , solve the full information optimization prob-

lem P3(T ) (19) and obtain
(
x̂0|T−1, {ŵk|T−1}T−1k=0

)
.

Otherwise, go to Step 4.
3: Estimate the states x̂k|T−1 with k = 0, . . . , T − 1 from

(10).
4: If T > N , solve the fix-dimension optimization problem
P ′3(T ) (25) and obtain

(
x̂T−N |T−1, {ŵk|T−1}T−1k=T−N

)
.

5: Estimate the states x̂k|T−1 with k = T −N, . . . , T − 1
according to (27).

6: Compute the next-step matrix PT−N+1 and priori esti-
mate x̄T−N+1 based on (29)-(34).

7: Collect the new sensor output yT to update the measure-
ment data. Set T = T + 1, and go to Step 2.

into the cylinder and the air mass flow qcyl into the manifold
volume is governed by the engine speed Ne and manifold
pressure Pm.

qair

throttle

θth

Pm

qcyl

Ne

VVT

Attack

Fig. 1. Airpath scheme. The air mass flow qair , the intake manifold
pressure Pm, the aspirated mass air flow qcyl, Opening throttle angle θth,
and number of crankshaft revolutions Ne.

To obtain a dynamical model of the engine air path
system, the standard mean value model [26] can be used.
Consequently, the dynamical model of the engine air path
system can be expressed by

Ṗm = σpαp(θth)f(Pm)− σpβpg(Pm, Ne)

qair = αp(θth)f(Pm)

qcyl = βpg(Pm, Ne)

where σp = RTm

Vm
, αp =

qair,max

2

√
Tref

Tatm

Patm

Pref
(1−cos(2θth)),

βp =
Vdisp

120RTm
, f(Pm) and g(Pm, Ne) are obtained by MAPs.

The above denotations is omitted due to space limit. The
readers can refer to [27] for details.

To estimate the state, three dependent sensors are em-
ployed to measure qair, Pm and qcyl, respectively. Assuming
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that the throttle angle θth and engine speed Ne keep constant,
a linear discrete model can be obtained at a set point with a
sample time 10ms. To illustrate the use of the attack-resilient
state estimator, the sensor for Pm is compromised from the
30th sample to end, while the sensors for qair and qcyl are
always healthy.

In order to evaluate the effectiveness of the proposed
resilient MHE scheme, we set N = 1, x̄0 = 55240, Q = 500,
R = diag([1, 0.1, 1]) × 10−6, δk = 4 × 10−3, α = 100
and the constraint x > 0 and then apply Algorithm 1. The
simulated results are given in Figure 2, where the behaviors
of the lower- and upper-level optimizations for a randomly
chosen simulation are shown. We can observe that the lower-
level optimization is able to identify the compromised sensor,
while the estimated state of MHE in the upper-level shows
better performance than the noised state.
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Fig. 2. Resilient MHE of the engine air path system with.

V. CONCLUSION

We have addressed the problem of state estimation for
linear systems with measurements affected by adversaries
by devising a novel approach based on a moving-horizon
strategy, for which the optimality has been established. We
have verified the effectiveness of the proposed approach via
simulations, where the engine air path system is investigated.
Further work will concern the method for nonlinear systems.
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